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Abstract

Multimodal Emotion Recognition (MER) seeks to
understand human emotions by integrating infor-
mation from textual, visual, and auditory modali-
ties. While recent advances in Multimodal Large
Language Models (MLLMs), such as Emotion-
LLaMA, have demonstrated strong performance,
they often struggle with distribution shifts and
generalization to unseen test domains.

In this work, we propose a reinforcement learning-
enhanced MER framework that integrates Test-
Time Reinforcement Learning (TTRL) with a
novel Majority Voting-based Verified Reward
mechanism. By incorporating an emotion-aware
reward function shaped by an emotional distance
matrix, our method enables dynamic adaptation of
lightweight LoRA adapters within a frozen Qwen-
32B backbone, thereby enhancing both emotional
consistency and generalization.

Extensive experiments on benchmark datasets,
including CMU-MOSEI and IEMOCAP, show
that our approach consistently outperforms strong
baselines in terms of both accuracy and emotion
consistency. Furthermore, ablation studies con-
firm the effectiveness of our soft reward design.
These results underscore the potential of com-
bining RL-based test-time adaptation with LLM-
driven MER, offering a promising path toward
more robust, adaptive, and emotionally intelligent
Al systems.

1. Introduction

Multimodal Emotion Recognition (MER) seeks to com-
prehensively understand human emotions by integrating
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information from diverse modalities—including text, vision,
and audio. This task plays a vital role in applications such
as human-computer interaction, affective computing, and
social robotics. Recently, Large Language Models (LLMs)
have exhibited strong capabilities in semantic representa-
tion and cross-modal fusion, pushing the frontier of MER
systems.

Early approaches to MER, including those by Baltrusaitis et
al. (Baltrusaitis et al., 2018) and Zadeh et al. (Zadeh et al.,
2017), primarily relied on handcrafted or early/late fusion
strategies. These methods struggled to model the complex
and dynamic relationships across modalities. Subsequent
work introduced deep architectures such as RNNs, CNNs,
and Transformers, which enhanced cross-modal represen-
tation learning (Tsai et al., 2019). More recently, multi-
modal large language models (MLLMs), such as Emotion-
LLaMA (Cheng et al., 2024), have employed multimodal
encoders and instruction tuning to significantly improve
both emotion recognition and reasoning.

However, existing MLLM-based MER systems heavily de-
pend on supervised fine-tuning, which limits their adapt-
ability in low-resource settings or under distribution shifts.
Reinforcement Learning (RL) has emerged as a powerful
tool for enhancing LLMs in such scenarios. In particu-
lar, Test-Time Reinforcement Learning (TTRL) (Zuo et al.,
2025) introduces a majority voting-based reward mecha-
nism that enables self-adaptation on unlabeled data, offering
an alternative to traditional supervised fine-tuning (SFT)
frameworks.

Inspired by these developments, we propose an RL-
enhanced training framework for MER that builds upon
the Emotion-LLaMA architecture. Our method employs
modality-specific encoders for vision, audio, and text, and
projects the aligned cross-modal features into a Qwen-32B
LLM backbone. Beyond initial SFT, we incorporate a Test-
Time Reinforcement Learning (TTRL) mechanism guided
by a structure-aware verified reward defined as
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where W encodes emotion distances between the predicted
label a; and the pseudo-gold label a* derived from major-
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ity voting. This soft reward design supports emotionally
coherent and stable adaptation, and enables the model to fur-
ther optimize its predictions using advanced RL algorithms,
including Proximal Policy Optimization (PPO) and Group
Relative Policy Optimization (GRPO). This design allows
the model to better understand and adapt to emotionally rich
and diverse inputs.

Our main contributions are summarized as follows:

* We introduce Test-Time Reinforcement Learning
(TTRL) to MER and propose a verified reward mech-
anism based on majority voting to enable adaptive
optimization on unlabeled data. This enhances the
generalization and reasoning capabilities of LLMs in
emotion recognition.

* We develop an optimized variant of the Emotion-
LLaMA framework by integrating cross-modal align-
ment and RL-based adaptation within a Qwen-32B
LLM backbone through lightweight LoRA adapters.

» Extensive experiments on benchmark datasets show
that our RL-enhanced MER framework consistently
outperforms strong baselines under distribution shift
and test-time adaptation scenarios.

2. Related Work

Multimodal Emotion Recognition (MER). The task of
multimodal emotion recognition (MER) was first formalized
by Busso et al. (Busso et al., 2004), who demonstrated that
combining facial and acoustic features through decision-
level and feature-level fusion significantly enhanced the
accuracy and robustness of emotion recognition systems.
This early work established the foundation for exploring
modality complementarity in affective computing.

Subsequent studies have introduced increasingly sophisti-
cated architectures. Chen et al. proposed MemoCMT (Chen
et al., 2023), which utilizes HuBERT and BERT to extract
deep representations from audio and text, respectively. How-
ever, its dependence on heavyweight Transformer architec-
tures incurs high computational costs and often suffers from
generalization issues in emotionally complex scenarios.

TACFN (Li et al., 2022) improves cross-modal fusion by
incorporating self-attention-based feature selection and dy-
namic weighting mechanisms. Despite these advantages,
it still faces challenges related to temporal alignment and
scalability across diverse modalities.

More recently, Emotion-LLaMA (Cheng et al., 2024) ad-
vanced the field by projecting audio, visual, and textual
inputs into a shared latent space. Leveraging instruction-
tuning on fine-grained emotion samples, it demonstrated

strong performance on reasoning and classification tasks
with an LLaMA-7B backbone.

Reinforcement learning (RL) has emerged as a promising
paradigm for modeling dynamic and temporal aspects of
emotion. Early approaches relied on value-based optimiza-
tion methods, such as Q-learning (Watkins & Dayan, 1992),
which model the state-action value function to capture tran-
sitions between emotional states. However, these methods
struggle in high-dimensional multimodal environments due
to instability in Q-value estimation.

To address these limitations, policy-based methods such as
Proximal Policy Optimization (PPO) (Schulman et al., 2017)
have been introduced. PPO constrains policy updates to
improve training stability and enhances robustness to noisy
audio-visual inputs. Building on this, Shao et al. (Shao
et al., 2024) proposed Group Relative Policy Optimization
(GRPO), which models group-wise reward distributions
to quantify uncertainty in emotional predictions, yielding
better generalization in complex dialogue settings.

RL has also been applied to emotion recognition tasks
through various architectural innovations. Zhang et
al. (Zhang et al., 2024) proposed RL-EMO, a reinforce-
ment learning framework combining Multi-modal Graph
Convolution Networks (MMGCNSs) with an RL module
to model emotional-level context dependencies, achieving
strong performance on the IEMOCAP and MELD datasets.
Furthermore, Zhao et al. (Zhao et al., 2025b) introduced
R1-Omni, which applies RL with verifiable reward (RLVR)
to omni-modal LLMs, significantly improving reasoning,
emotion recognition accuracy, and cross-domain generaliza-
tion. Their work highlights the potential of RLVR not only
for performance gains but also for enhancing interpretability
in emotion modeling.

In addition, hybrid frameworks that integrate both value-
based and policy-based strategies have shown promise. For
example, RLVR introduces a verified reward formulation
into LLM-based MER pipelines, improving interpretability,
cross-modal generalization, and training efficiency. This
line of work suggests that RL-guided optimization is a
promising direction for enhancing MER performance, par-
ticularly under low-resource and distribution-shifted condi-
tions.

3. Method

3.1. Overall Framework

Figure 1 illustrates the overall architecture of our proposed
RL-enhanced MER framework. We first utilize modality-
specific encoders to extract representations from text, audio,
and visual inputs. These features are aligned and projected
into a shared space, which is fed into a Qwen-32B large
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Figure 1. Overall architecture of the proposed RL-enhanced MER framework.

language model (LLM) equipped with lightweight LoRA
adapters.

We first perform supervised fine-tuning (SFT) on labeled
data to obtain a strong initialization. During test-time, we
apply a reinforcement learning (RL) phase based on Test-
Time Reinforcement Learning (TTRL), where a Majority
Voting-based Verified Reward is computed to guide the
LoRA adapters to adapt to the unseen data distribution. PPO
or GRPO algorithms are used for stable RL optimization.

3.2. Multimodal Encoders

We adopt three modality-specific encoders to extract deep
representations:

* Text Encoder: Tokenizer and embedding layer com-
patible with Qwen-32B LLM.

¢ Visual Encoder: CLIP-ViT (Agarwal et al., 2021) is
used to obtain visual embeddings.

¢ Audio Encoder: HuBERT (Hsu et al., 2021) is em-

ployed to extract audio embeddings.

All modality embeddings are projected into a unified feature
space via linear layers and concatenated to form the input
to the LLM.

3.3. Supervised Fine-tuning (SFT)

We perform supervised fine-tuning (SFT) on labeled MER
datasets (e.g., CMU-MOSEI, IEMOCAP) to warm up the

LLM parameters. To ensure efficiency and flexibility, we
freeze the Qwen-32B backbone and introduce LoRA (Low-
Rank Adaptation) adapters (Hu et al., 2022), which are
lightweight trainable modules inserted into the LLM layers.

The advantages of this design are twofold:

* It enables efficient training with fewer parameters.

* It allows fast and targeted adaptation during test-time
reinforcement learning.

3.4. RL-enhanced Test-time Adaptation
3.4.1. MAJORITY VOTING-BASED VERIFIED REWARD

During the TTRL phase, for each input sample x, we per-
form k rollouts with the current policy 7y to generate sam-
pled outputs {y1, Yo, . - ., yx }. We extract the emotion labels
{a1,as,...,a;} from these outputs and determine the ma-
jority vote a* as:

k
a* = arg maxZH(ai =a)
a
i=1

To provide a more informative and fine-grained reward sig-
nal for emotion classification, we adopt the idea of emo-
tional distance, inspired by (Zhao et al., 2024). Specifically,
we define an emotional distance matrix W € R€*C where
C' is the number of emotion classes, and each entry W; ;
represents the semantic distance between emotion labels ¢
and j.
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The distance matrix W is constructed based on established
emotion wheels, such as Plutchik’s wheel (Plutchik, 2001),
or can be empirically derived from embedding spaces (e.g.,
using cosine distances between emotion label embeddings).
Typically, the matrix satisfies:

Wi; 20, Wi;i=0, W,; =W,

Based on W, we compute the Verified Reward R, (y;) for
each sampled output y; (with predicted label a;) as:

1
B 93) = 7509, -

where a > 0 is a scaling hyperparameter controlling the
sensitivity to emotional distance.

Key properties of this reward function:

* If a; = a* (perfect match), W, ,~ = 0, hence R,,,, =
1.

e If a; is close to a* (emotionally similar), W, o+ is
small = R,,, is high.

* If a; is emotionally distant from a*, W, .- is large
= R, 1S low.

Compared to binary rewards, this soft reward formulation
enables more stable RL optimization and encourages the
model to learn emotionally coherent predictions. It aligns
with recent trends in affective computing that emphasize
structure-aware learning (Zhao et al., 2024).

3.4.2. RL OpTIMIZATION WITH PPO / GRPO

We adopt Proximal Policy Optimization (PPO) (Schul-
man et al., 2017) and Group Relative Policy Optimization
(GRPO) (Shao et al., 2024) to optimize the LoRA adapters
during test-time adaptation.

The optimization objective over an unlabeled test set D is:
max E;p [Eyrms(yla) [Romo ()]
PPO Objective:
Lppo(0) = ExnD yrmy(yla) [min(rt(ﬁ) “ Rimo(9),
clip(r¢(0),1 —€,1+¢) - Rmv(y))]
where

o (y|7)

Tt(a) - TOoia (y‘.’L‘)

GRPO Objective:

Ai _ Rm'u(yz) - MR’ (1)
OR

Larpro(0) = Ep D ymro(ylo) [Ai - log mo(yilz)]  (2)

where pp and o are the mean and standard deviation of
rewards within each group (e.g., per batch).

Parameter Update Scope: During RL optimization,
the Qwen-32B backbone and modality encoders (Hu-
BERT/CLIP) are kept frozen. Only the parameters of the
LoRA adapters are updated, enabling efficient and targeted
test-time adaptation.

This RL-enhanced adaptation procedure allows the model
to dynamically adjust to distribution shifts and improve
consistency and generalization in emotion recognition under
unlabeled test scenarios.

4. Experiments
4.1. Datasets

We evaluate our proposed RL-enhanced MER framework on
two widely used multimodal emotion recognition datasets:

CMU-MOSEI (Zadeh et al., 2018) is a large-scale bench-
mark for multimodal sentiment and emotion analysis, com-
prising over 23,000 labeled video clips from YouTube. Each
clip includes synchronized text, audio, and visual modal-
ities, with annotations for six basic emotions: happiness,
sadness, anger, surprise, disgust, and fear.

IEMOCAP (Busso et al., 2008) is a high-quality dataset
containing dyadic conversations recorded by professional
actors. It provides aligned text, audio, and visual modalities
along with fine-grained emotion labels. Due to its richness
and structure, [IEMOCAP is commonly used for evaluating
multimodal emotion recognition models.

4.2. Experimental Setup

We adopt Qwen-32B as the backbone LLM, enhanced with
LoRA adapters (Hu et al., 2022) integrated into selected
transformer layers. The modality encoders are initialized as
follows:

» Text: Tokenized using a Qwen-compatible tokenizer.

* Visual: CLIP-ViT (Agarwal et al., 2021).
¢ Audio: HuBERT-base (Hsu et al., 2021).

Training Protocol:

* Supervised Fine-Tuning (SFT): The model is first
trained on 80% of the labeled data to establish a strong
initialization.
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Table 1. Preliminary results on MER benchmarks.

Method Accuracy Macro-F1 Consistency
CMU-MOSEI
Emotion-LLaMA (Cheng et al., 2024) 67.4% 65.1% 0.812
Emotion-LLaMA + RLVR (Zhao et al., 2025a) 69.0% 66.5% 0.825
Ours (TTRL + PPO) 70.3 % 67.8% 0.836
Ours (TTRL + GRPO) 71.0% 68.2% 0.842
IEMOCAP
Emotion-LLaMA (Cheng et al., 2024) 72.1% 70.4% 0.855
Emotion-LLaMA + RLVR (Zhao et al., 2025a) 73.5% 71.6% 0.864
Ours (TTRL + PPO) 74.9 % 72.8% 0.872
Ours (TTRL + GRPO) 75.6 % 73.4% 0.879

¢ Test-Time Reinforcement Learning (TTRL): At in-
ference, we perform £ = 5 rollouts per test input
to generate sampled predictions. The majority vote
among these predictions determines the pseudo-label
a*. We set the reward scaling factor o = 1.0.

* Optimization: We apply PPO (Schulman et al., 2017)
or GRPO (Shao et al., 2024) to update only the LoRA
parameters, while keeping the backbone and encoders
frozen.

e Evaluation Metrics: We report Accuracy (Acc),
Macro-F1, and Emotion-Consistency Score (Zhao
et al., 2024).

4.3. Results and Analysis

Table 1 summarizes the performance of our method and
baselines on both datasets.

Our RL-enhanced framework consistently outperforms
strong baselines across all metrics. Notably:

¢ Both PPO and GRPO variants significantly improve ac-
curacy and F1 compared to supervised-only and RLVR-
based models.

* The Emotion-Consistency score (Zhao et al., 2024) in-
dicates improved coherence and reliability in predicted
emotions after test-time RL adaptation.

* GRPO yields slightly better results than PPO, likely
due to its group-based normalization, which stabilizes
updates under distribution shifts.

4.4. Ablation Study

To assess the effect of the reward design, we perform ab-
lation experiments by varying the scaling factor « in the

Verified Reward function, and by comparing different de-
signs of the emotional distance matrix W (Plutchik-based
vs. embedding-based).

Table 2. Impact of « on performance (CMU-MOSEI).

« Accuracy Macro-F1
0 (binary reward) 68.1% 66.0%
0.5 69.5% 67.3%
1.0 71.0% 68.2%
2.0 70.2% 67.7%

The results validate the benefit of soft, structure-aware re-
ward signals. Setting o = 1.0 achieves the best trade-off
between expressiveness and reward sensitivity, confirming
the advantage of our verified reward mechanism over simple
binary feedback.

5. Conclusion

In this work, we propose a novel reinforcement learning-
enhanced framework for multimodal emotion recognition
(MER), which integrates Test-Time Reinforcement Learn-
ing (TTRL) with a Majority Voting-based Verified Reward
mechanism. Our approach incorporates pre-trained mul-
timodal encoders and a Qwen-32B large language model,
augmented with lightweight LoRA adapters, to enable effi-
cient and dynamic adaptation to unseen distributions.

Motivated by recent progress in affective computing, we
introduce a fine-grained, emotion-aware reward function
based on an emotional distance matrix, offering more infor-
mative and stable guidance for the learning process. Exten-
sive experiments on benchmark datasets demonstrate that
our method consistently improves both accuracy and emo-
tional consistency, outperforming strong baselines such as
Emotion-LLaMA and RLVR-based approaches.
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These findings highlight the potential of combining RL-
based test-time adaptation with large-scale multimodal lan-
guage models to improve generalization and robustness,
especially under distributional shifts.

For future work, we plan to explore the following directions:

* Designing more expressive and adaptive reward shap-
ing techniques using learned or hierarchical emotion
spaces.

» Extending our framework to additional MER bench-
marks and real-world, in-the-wild scenarios.

* Investigating the interplay between different RL algo-
rithms and various emotion representation paradigms
(e.g., discrete, dimensional, or latent embeddings).

We believe this research opens promising avenues for de-
veloping Al systems that are not only more adaptive and
robust, but also more emotionally intelligent and context-
aware, paving the way for safer and more human-aligned
interaction.
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